YES 0.929 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((maximum :: [Char ->  Char) :: [Char ->  Char)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((maximum :: [Char ->  Char) :: [Char ->  Char)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
max x y
 | x <= y
 = y
 | otherwise
 = x

is transformed to
max x y = max2 x y

max0 x y True = x

max1 x y True = y
max1 x y False = max0 x y otherwise

max2 x y = max1 x y (x <= y)

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule Main
  (maximum :: [Char ->  Char)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_max1(vx26, vx27, Succ(vx280), Succ(vx290)) → new_max1(vx26, vx27, vx280, vx290)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldl(vx30, :(vx310, vx311)) → new_foldl(new_max10(vx30, vx310), vx311)

The TRS R consists of the following rules:

new_max11(vx26, vx27, Zero, Succ(vx290)) → new_max12(vx26, vx27)
new_max12(vx26, vx27) → Char(Succ(vx27))
new_max11(vx26, vx27, Zero, Zero) → new_max12(vx26, vx27)
new_max11(vx26, vx27, Succ(vx280), Zero) → Char(Succ(vx26))
new_max10(Char(Succ(vx3000)), Char(Zero)) → Char(Succ(vx3000))
new_max10(Char(Zero), Char(Succ(vx31000))) → Char(Succ(vx31000))
new_max10(Char(Zero), Char(Zero)) → Char(Zero)
new_max10(Char(Succ(vx3000)), Char(Succ(vx31000))) → new_max11(vx3000, vx31000, vx3000, vx31000)
new_max11(vx26, vx27, Succ(vx280), Succ(vx290)) → new_max11(vx26, vx27, vx280, vx290)

The set Q consists of the following terms:

new_max11(x0, x1, Zero, Zero)
new_max11(x0, x1, Succ(x2), Zero)
new_max10(Char(Zero), Char(Zero))
new_max11(x0, x1, Succ(x2), Succ(x3))
new_max11(x0, x1, Zero, Succ(x2))
new_max10(Char(Succ(x0)), Char(Succ(x1)))
new_max10(Char(Succ(x0)), Char(Zero))
new_max10(Char(Zero), Char(Succ(x0)))
new_max12(x0, x1)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: